The logically equivalent preposition of $p \Leftrightarrow q$ is
$\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$
$p \wedge q$
$\left( {p \wedge q} \right) \vee \left( {q \Rightarrow p} \right)$
$\left( {p \wedge q} \right) \Rightarrow \left( {q \vee p} \right)$
The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee \sim q} \right)} \right) \wedge \left( { \sim p \wedge \sim q} \right)$ is equivalent to
The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is
The contrapositive of $(p \vee q) \Rightarrow r$ is
$\sim (p \Leftrightarrow q)$ is
Negation of $p \wedge (\sim q \vee \sim r)$ is -