The logically equivalent preposition of $p \Leftrightarrow q$ is

  • [AIEEE 2012]
  • A

    $\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$

  • B

    $p \wedge q$

  • C

    $\left( {p \wedge q} \right) \vee \left( {q \Rightarrow p} \right)$

  • D

    $\left( {p \wedge q} \right) \Rightarrow \left( {q  \vee p} \right)$

Similar Questions

The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee  \sim q} \right)} \right) \wedge \left( { \sim p \wedge  \sim q} \right)$ is equivalent to

  • [JEE MAIN 2019]

The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is

The contrapositive of $(p \vee q) \Rightarrow r$ is

$\sim (p \Leftrightarrow q)$ is

Negation of $p \wedge (\sim q \vee \sim r)$ is -